Purification and properties of an ATPase from Sulfolobus solfataricus.

نویسندگان

  • L I Hochstein
  • H Stan-Lotter
چکیده

A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzofurazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-Cl was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuriphenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethylmaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sulfolobus solfataricus AAA protein Sso0909, a homologue of the eukaryotic ESCRT Vps4 ATPase.

Sso0909 is a protein of the thermo-acidophilic crenarchaeon Sulfolobus solfataricus, annotated as a p60 katanin-like ATPase. We present here results supporting the hypothesis that Sso0909 is an orthologue of the eukaryotic ESCRT (endosomal sorting complex required for transport) ATPase Vps4 (vacular protein sorting 4). The spectrum of Sso0909 homologues is limited to several orders of Crenarcha...

متن کامل

X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA

SWI2/SNF2 ATPases remodel chromatin or other DNA:protein complexes by a poorly understood mechanism that involves ATP-dependent DNA translocation and generation of superhelical torsion. Crystal structures of a dsDNA-translocating SWI2/SNF2 ATPase core from Sulfolobus solfataricus reveal two helical SWI2/SNF2 specific subdomains, fused to a DExx box helicase-related ATPase core. Fully base paire...

متن کامل

Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing.

A gene (ssg) encoding a putative glucoamylase in a hyperthermophilic archaeon, Sulfolobus solfataricus, was cloned and expressed in Escherichia coli, and the properties of the recombinant protein were examined in relation to the glucose production process. The recombinant glucoamylase was extremely thermostable, with an optimal temperature at 90 degrees C. The enzyme was most active in the pH r...

متن کامل

Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ...

متن کامل

Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus.

Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for archaea, and no system for high-level gene expression existed for hyperthermophilic organisms. Recentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 295 1  شماره 

صفحات  -

تاریخ انتشار 1992